Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335925

RESUMO

Wearable and flexible ß-Ga2O3-based semiconductor devices have attracted considerable attention, due to their outstanding performance and potential application in real-time optoelectronic monitoring and sensing. However, the unavailability of high-quality crystalline and flexible ß-Ga2O3 membranes limits the fabrication of relevant devices. Here, through lattice epitaxy engineering together with the freestanding method, we demonstrate the preparation of a robust bending-resistant and crystalline ß-Ga2O3 (-201) membrane. Based on this, we fabricate a flexible ß-Ga2O3 photodetector device that shows comparable performance in photocurrent responsivity and spectral selectivity to conventional rigid ß-Ga2O3 film-based devices. Moreover, based on the transferred ß-Ga2O3 membrane on a silicon wafer, the PEDOT:PSS/ß-Ga2O3 p-n heterojunction device with self-powered characteristic was constructed, further demonstrating its superior heterogeneous integration ability with other functional materials. Our results not only demonstrate the feasibility of obtaining a high-quality crystalline and flexible ß-Ga2O3 membrane for an integrated device but also provide a pathway to realize flexible optical and electronic applications for other semiconducting materials.

2.
J Colloid Interface Sci ; 649: 107-117, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37339561

RESUMO

The shortage of drinking water has become a global problem, coastal cities can make full use of abundant seawater resources by desalination technology to ease the contradiction between supply and demand. However, fossil energy consumption contradicts the goal of reducing carbon dioxide emissions. Currently, researchers favor interfacial solar desalination devices relying only on clean solar energy. Based on the structure optimization of the evaporator, a kind of device composed of a superhydrophobic BiOI (BiOI-FD) floating layer and CuO polyurethane sponge (CuO sponge) is constructed in this paper, with its design advantages presented in the following two aspects: 1. The novel BiOI-FD photocatalyst in the floating layer reduces the surface tension and realizes the degradation of the enriched pollutants, ensuring the device to achieve solar desalination and inland sewage purification; 2. CuO sponge can inhibit salt crystallization and realize the combination of the water transport and photothermal layers. Particularly, the photothermal evaporation rate of the interface device reached 2.37 kg m-2 h-1.The novel interface evaporator design will bring a new solution for solar desalination, sewage treatment and large-scale application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...